Hypoxia-ischemia induces an endogenous reparative response by local neural progenitors in the postnatal mouse telencephalon.

نویسندگان

  • Maria Dizon
  • Francis Szele
  • John A Kessler
چکیده

Perinatal hypoxia-ischemia in the preterm neonate commonly results in white matter injury for which there is no specific therapy. The subventricular zone (SVZ) of the brain harbors neural stem cells and more committed progenitors including oligodendroglial progenitor cells that might serve as replacement cells for treating white matter injury. Data from rodent models suggest limited replacement of mature oligodendroglia by endogenous cells. Rare newly born mature oligodendrocytes have been reported within the striatum, corpus callosum and infarcted cortex 1 month following hypoxia-ischemia. Whether these oligodendrocytes arise in situ or emigrate from the SVZ is unknown. We used a postnatal day 9 mouse model of hypoxia-ischemia, BrdU labeling of mitotic cells, immunofluorescence and time-lapse multiphoton microscopy to determine whether hypoxia-ischemia increases production of oligodendroglial progenitors within the SVZ with emigration toward injured areas. Although cells of the oligodendroglial lineage increased in the brain ipsilateral to hypoxic-ischemic injury, they did not originate from the SVZ but rather arose within the striatum and cortex. Furthermore, they resulted from proliferation within the striatum but not within the cortex. Thus, an endogenous regenerative oligodendroglial response to postnatal hypoxia-ischemia occurs locally, with minimal long-distance contribution by cells of the SVZ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

The Homeobox Gene Gsx2 Regulates the Self-Renewal and Differentiation of Neural Stem Cells and the Cell Fate of Postnatal Progenitors

The Genetic screened homeobox 2 (Gsx2) transcription factor is required for the development of olfactory bulb (OB) and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs) is not clear. Similarly, ...

متن کامل

Combination Therapy with A1 Receptor Agonist and Vitamin C Improved Working Memory in a Mouse Model of Global Ischemia-Reperfusion

Introduction: Stroke is one of the most important reasons of death. Hence, trials to prevent or lessen the complications originated by stroke are a goal of public health worldwide. The ischemia-reperfusion causes hypoxia, hypoglycemia and incomplete repel of metabolic waste products and leads to accumulation of free radicals triggering neuronal death. The A1 adenosine receptoras an endogenous l...

متن کامل

Wnts influence the timing and efficiency of oligodendrocyte precursor cell generation in the telencephalon.

Oligodendrocyte precursor cells (OPCs) are generated from multiple progenitor domains in the telencephalon in developmental succession from ventral to dorsal. Previous studies showed that Wnt signaling inhibits the differentiation of OPCs into mature oligodendrocytes. Here we explored the hypothesis that Wnt signaling limits the generation of OPCs from neural progenitors during forebrain develo...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neuroscience

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2010